

Selecting the Correct Genetic Test and Interpretation in Epilepsy

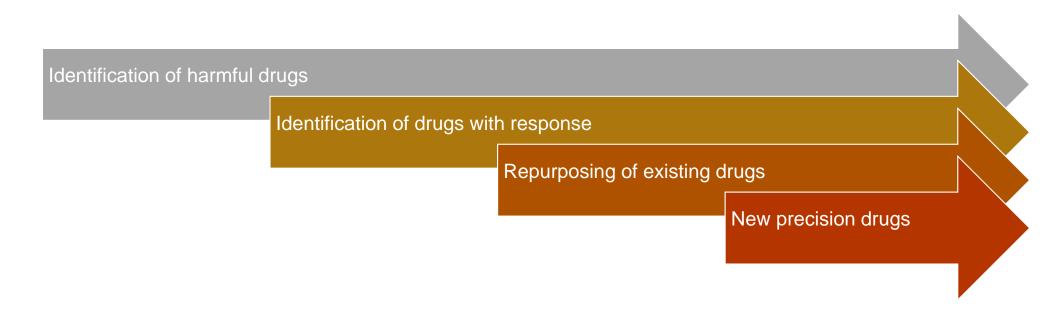
Mo, Sep 21st, 2020

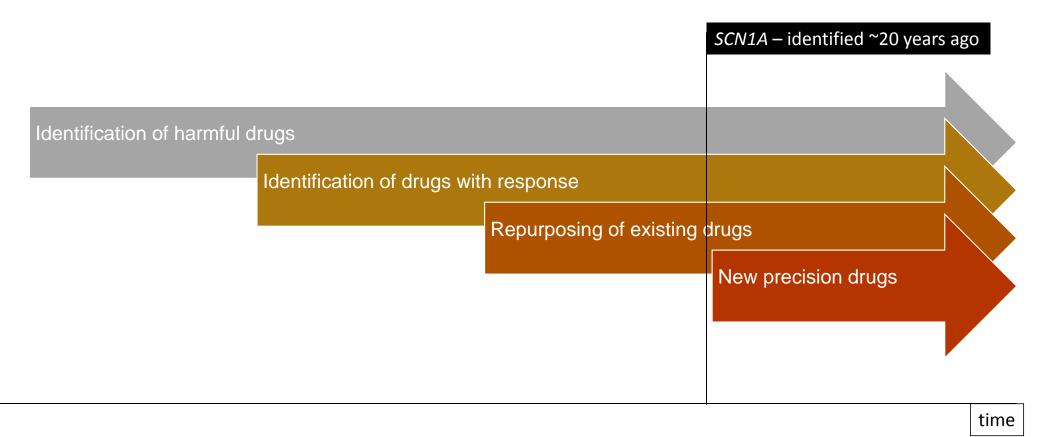
Dennis Lal, PhD – Assistant Professor for Molecular Medicine

Epilepsy Center, Neurological Institute, *Cleveland Clinic, Cleveland, Ohio, USA*. Genomic Medicine Institute, Lerner Research Institute *Cleveland Clinic, Cleveland, Ohio, USA* Stanley Center for Psychiatric Research, *Broad Institute of Harvard and M.I.T., Cambridge, USA* Cologne Center for Genomics, *University of Cologne, Cologne, Germany*

lald@CCF.org @LalDennis ✓

Why is genetic testing useful in caring for epilepsy patients?


- Understanding the genetic basis of the condition might help give information about the progress of the condition, possible preventive actions or treatment.
- Patients with a genetic condition may just find it helpful to know why their signs and symptoms occur.
 - Many Gene-Disorder Family Organizations have been formed **raising funds for research** and **provide support** for new patients and families.


Examples of precision medicine in epilepsy

Gene	AEDs/treatments	a selected from recent revie AED to avoid	Other management	nt Rate of precision medicine re-		
Conc	recommended		Implications	sponders		
SLC2A1	Ketogenic Diet	-	-	Most respond		
ALDH7A1 and PNPO	Pyridoxine	-	Lysine-restricted diet	A minority responds		
SCN1A	Stiripentol, Valproate, Clobazam, Ketogenic Diet Cannabidiol, Fenflu- ramine	Phenytoin/Carbamaz- pine /Lamotrigine/Ox- carbazepine		Minority responds to the current treatment regime, but clinical trials with Fenfluramine look promising		
SCN2A	SCN2A-GOF: Carbamaz- epine, phenytoin, Ox- carbazepine	SCN2A-LOF: Carbam- azepine, phenytoin, Ox- carbazepine	Consider high-dose IV phenytoin for sta- tus epilepticus	Variable response rates for SCN2A- GOF		
SCN8A	Carbamazepine, pheny- toin, Oxcarbazepine	-	-	Minority respond. It depends if mu- tations lead to gain- or loss-of-func- tion		
KCNQ2	Carbamazepine, pheny- toin, Retigabine	-	-	Minority responds. It depends if mu- tations lead to gain- or loss-of-func- tion		
PCDH19	Clobazam, steroids	-	-	Minority responds		
PRRT2	Carbamazepine	-	-	Majority responds		
KCNT1	Trial of Quinidine in early- onset seizures, Potassium bromides, Ketogenic Diet, Vigabatrin	-	-	Minority responds		

Scheffer et al ., 2020 Eur J Paediatr Neurol. Musto E et al., 2019 Eur J Paediatr Neurol. Symonds JD, McTague A. 2020 Eur J Paediatr Neurol.

Genes identified 1 year ago	Genes identified 10 years ago	SCN1A – identified ~20 years ago	
Identification of harmful drugs			
Identifica	ion of drugs with response		
	Repurposing of existing of	rugs	
		New precision drugs	
		tir	me

Genes identified 1 year ago	Genes identified 10 years ago	SCN1A – identified ~20 years ago
Identification of harmful drugs		
Identification of o	rugs with response	
	Repurposing of existing of	rugs
		New precision drugs
		time

For complex genetic etiologies such as large copy number variants or somatic epilepsies progress is slower

What % of epilepsy patients are "genetic"?

We don't know.

A population based comprehensive genetic screen across all age ranges and tissue types has not been performed.

What % of epilepsy patients are "genetic"?

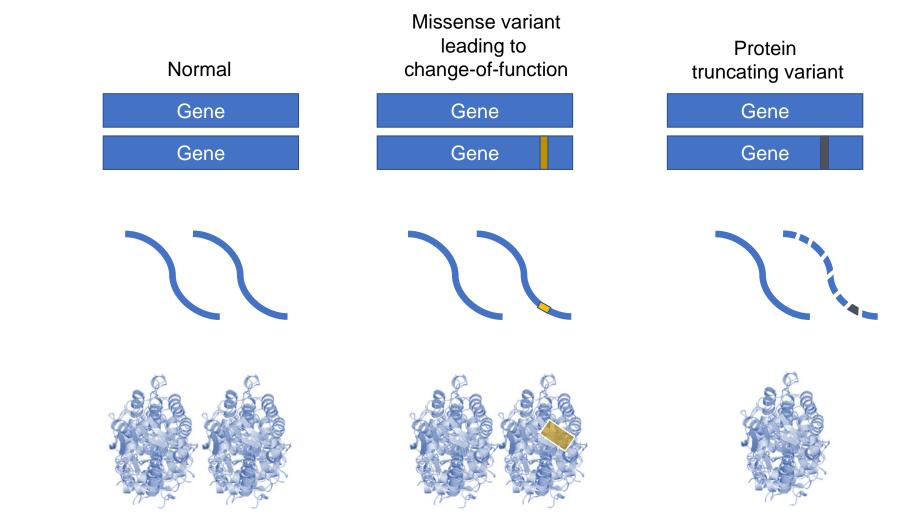
We don't know.

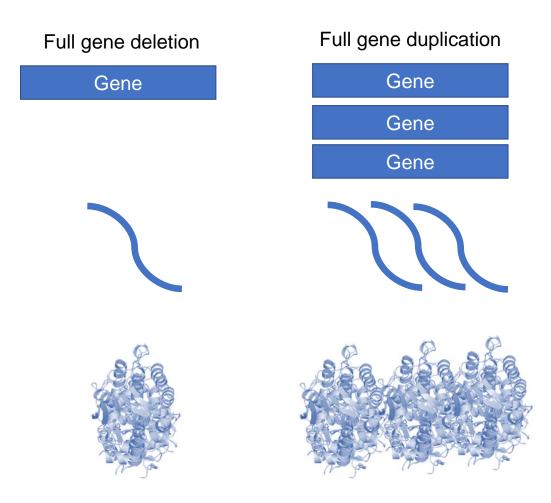
A population based comprehensive genetic screen across all age ranges and tissue types has not been performed.

Most epilepsy genetic cohort screening studies focus on epilepsy subtypes, ascertained through tertiary care centers & perform targeted testing of rare variants

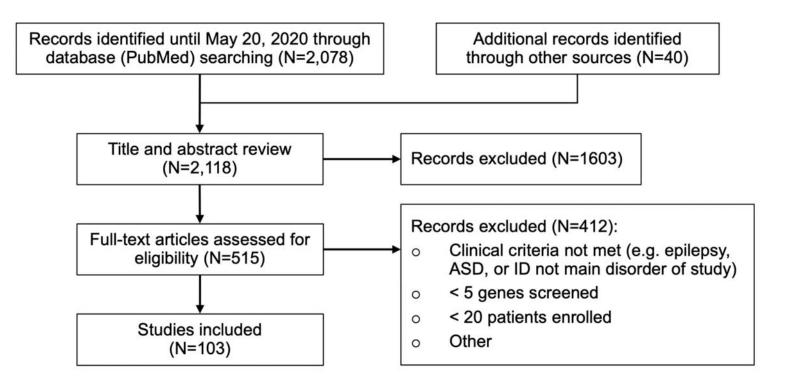
What % of epilepsy patients are "genetic"?

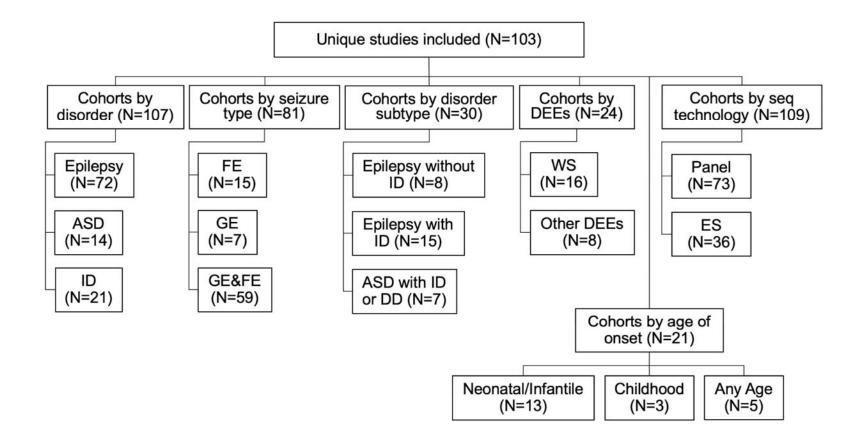
We tried to answer this question based on (incomplete) data available

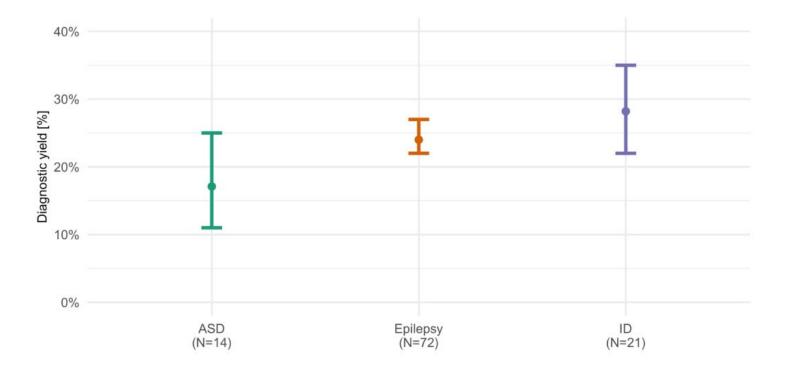

medRxiv The preprint server for health sciences	Cold Spring Harbor Laboratory	Yale	HOME ABC
Clinical sequencing yield in epile intellectual disability: A system		m disorder,	and
Arthur Stefanski, Yamile Calle Lopez, Costin Le doi: https://doi.org/10.1101/2020.05.04.200898		estana-Knight, De	nnis Lal


Arthur Stefanski

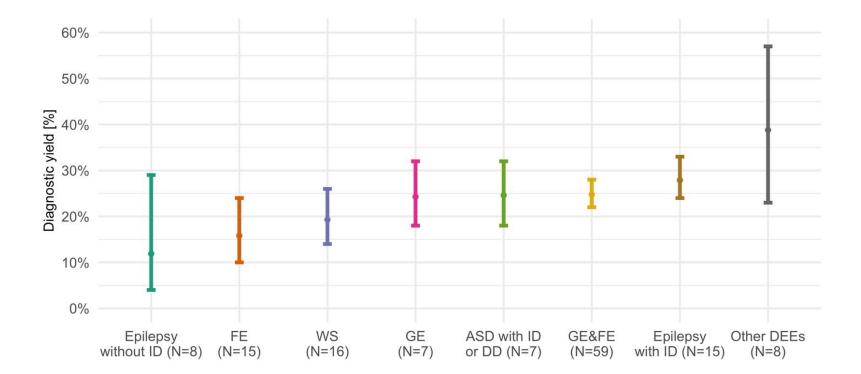
Stefanski et al., 2020 in review


Most common clinically screened types of pathogenic genetic variants

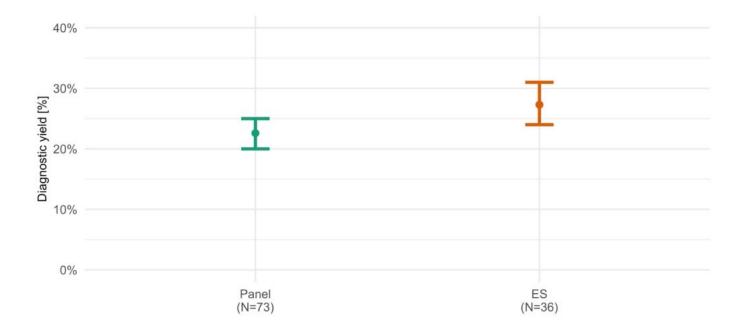

Most common clinically screened types of pathogenic genetic variants


We identified 103 studies, including 72 epilepsy specific ones, to estimate the % of genetic test positive people with a neurodevelopmental disorder

The 103 studies were categorized for additional downstream analyses



In the disorder analysis about 1 in 3-6 people with a neurodevelopmental disorder are genetic test positive


Abbreviations: ASD = autism spectrum disorder, ID = intellectual disability.

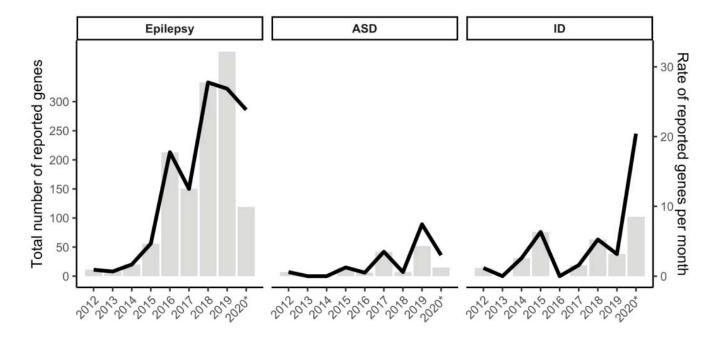
Epilepsy patients with cognitive problems have greater genetic burden

Abbreviations: GE&FE = combined generalized and focal epilepsy, FE = focal epilepsy, GE = generalized epilepsy, WS = West syndrome, ASD with ID or DD = autism spectrum disorder with intellectual disability or developmental delay.

Diagnostic yield is higher in Whole Exome Sequencing vs. gene panel sequencing studies

The diagnostic yield across Panel and ES.

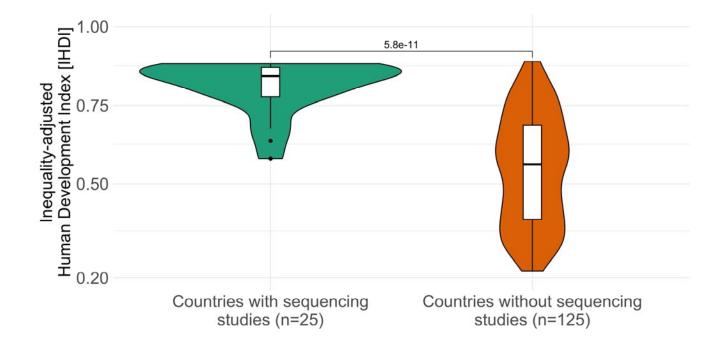
Abbreviations: Panel = targeted gene panel sequencing, ES = exome sequencing.


Diagnostic yield in early onset epilepsies is greater compared to later onset epilepsies

Epilepsy Studies by Age of Onset (N=21) Cases Total Proportion

	•	····	reperaen			
Neonatal/Infantile (N=13)					:	
Shellhaas et al., 2017	17	26	0.65	[0.44; 0.83]		_
Gokben et al., 2016	12	30	0.40	[0.23; 0.59]		
Rochtus et al., 2020	50	125	0.40	[0.31; 0.49]		
Rim et al., 2018	28	74		[0.27; 0.50]	— <u>—</u> —	
Zhou et al., 2018	24	70	0.34	[0.23; 0.47]		
Zhang et al., 2017	55	174	0.32	[0.25; 0.39]		
Wirrell et al., 2015	11	38	0.29	[0.15; 0.46]		
Krey et al., 2019	13	45	0.29	[0.16; 0.44]		
Berg et al., 2017	42	147	0.29	[0.21; 0.37]		
Kodera et al., 2013	11	53	0.21	[0.11; 0.34]	— <u>i</u>	
Arafat et al., 2017	13	68	0.19	[0.11; 0.30]		
Michaud et al., 2014	7	44	0.16	[0.07; 0.30]		
Muir et al., 2019	7	92	0.08	[0.03; 0.15]		
Random effects model		986	0.29	[0.23; 0.36]	-	
Heterogeneity: I ² = 76% [59%; 86%]						
Childhood (N=3)						
Routier et al., 2019	11	27	0.41	[0.22; 0.61]		
Angione et al., 2019	5	57	0.09	[0.03; 0.19]		
Licchetta et al., 2019	6	87	0.07	[0.03; 0.14]		
Random effects model		171	0.15	[0.04; 0.42]		
Heterogeneity: I ² = 89% [69%; 96%]						
Any Age (N=5)						
Muona et al., 2014	26	84	0.31	[0.21; 0.42]		
Perucca et al., 2017	5	40	0.12	[0.04; 0.27]	— <u>—</u> —	
Krenn et al., 2020	13	112	0.12	[0.06; 0.19]		
Tsai et al., 2018	11	593	0.02	[0.01; 0.03]		
Hildebrand et al., 2016	2	251	0.01	[0.00; 0.03]	œ	
Random effects model		1080	0.07	[0.02; 0.22]	-	
Heterogeneity: I ² = 95% [91%; 97%]						
Random effects model		2237	0.20	[0.14; 0.27]	-	
Heterogeneity: I ² = 91% [88%; 93%]						
					0 0.2 0.4 0.6 0	0.8 1
					Diagnostic yield	

95% CI


The number of genes with pathogenic variant is still increasing

The bars represent the number of genes with pathogenic variants. The line represents the rate of genes per month and year. The number of identified genes increased rapidly in recent years for epilepsy. For ASD and ID the number of reported genes with pathogenic variants is low. Abbreviations: ASD = autism spectrum disorder, ID = intellectual disability, * = Data were collected until May 20, 2020.

Likely health disparities: No access to genetic testing?

Countries with sequencing studies have a significantly higher mean Inequality-adjusted Human Development Index (IHDI), compared to countries without sequencing studies($P = 5.8 \times 10^{-11}$)

Summary of our meta-analysis

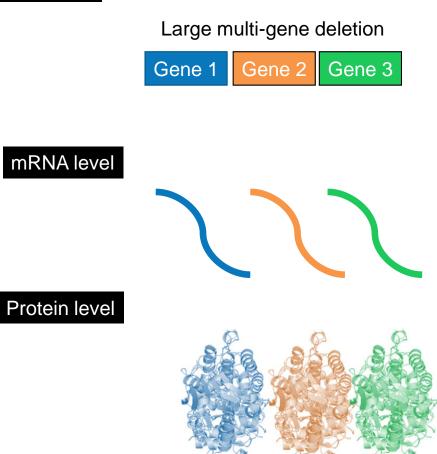
- 1 in 2-12 people with epilepsy with receive a diagnosis through currently available genetic tests
- Earlier epilepsy onset and cognitive challenges increase the chance of a positive genetic test
- More comprehensive genetic tests have a greater diagnostic yield
- The number of epilepsy-associated genes is increasing
- Not everyone has access to genetic testing

Arthur Stefanski

Summary of our meta-analysis

- 1 in 2-12 people with epilepsy with receive a diagnosis through currently available genetic tests
- Earlier epilepsy onset and cognitive challenges increase the chance of a positive genetic test
- More comprehensive genetic tests have a greater diagnostic yield
- The number of epilepsy-associated genes is increasing
- Not everyone has access to genetic testing

What did the studies miss? -> Most studies analyzed only known epilepsy genes


Arthur Stefanski

There a several classes of epilepsy associated genetic variants, which are currently not routinely screened or interpreted

Large pathogenic copy number variants not affecting an established epilepsy gene

DNA level

Large multi-gene duplication

Gene 2

Gene 2

Gene 2

Gene 3

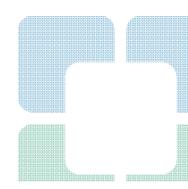
Gene 3

Gene 3

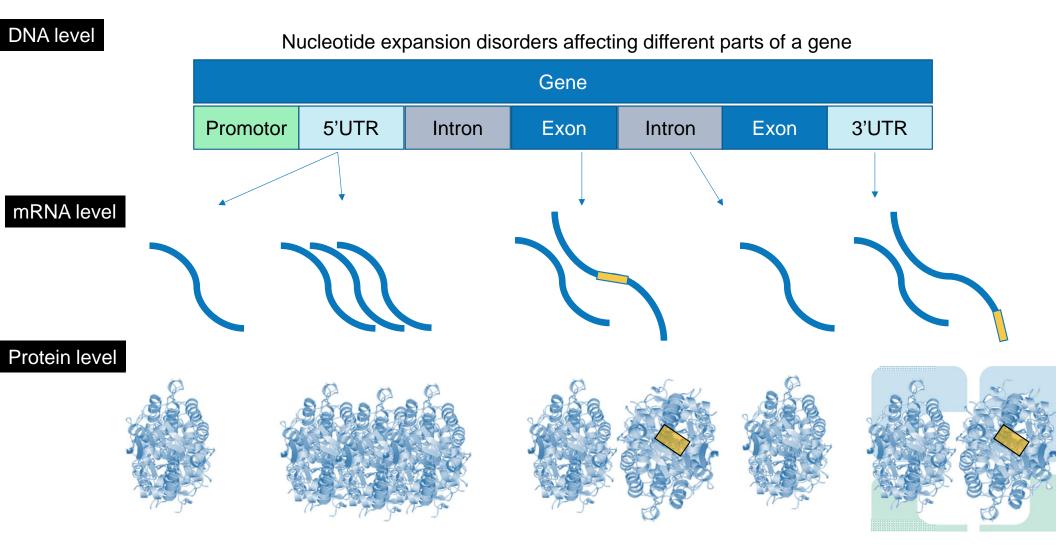
Gene 1

Gene 1

Gene 1

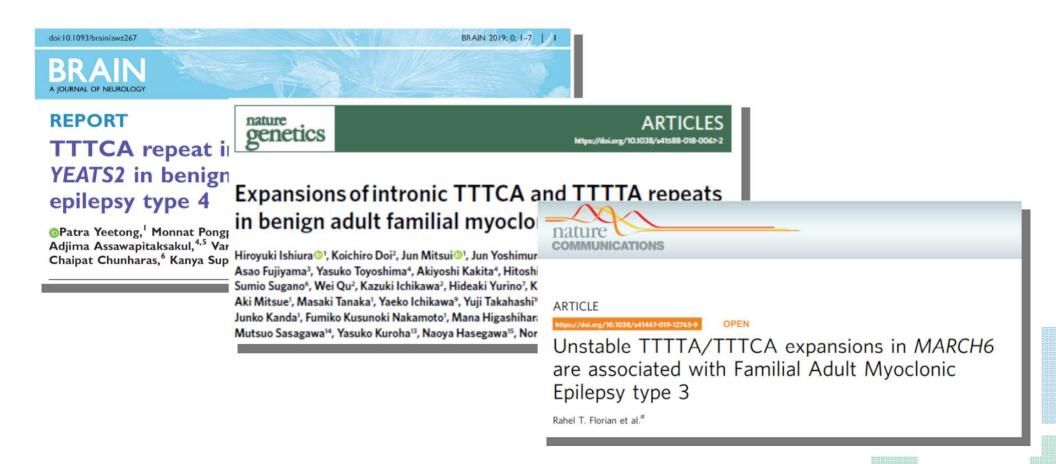

Large pathogenic copy number variants not affecting an established epilepsy gene

Category	Subgroup	Cases	Controls		Р
>2Mb	DEE	14/1308	16/6746		3.39x10 ⁻⁵⁴
	GGE	31/3643	16/6746	>	6.33x10 ⁻⁵⁴
	LFE	10/1263	16/6746	\longrightarrow	2.51x10-3
	NAFE	15/4498	16/6746		3.91x10 ⁻¹
500kb-2Mb	DEE	50/1308	226/6746	+	3.88x10 ⁻¹
	GGE	176/3643	226/6746		2.32x10-4
	LFE	33/1263	226/6746	•	1.75x10-1
	NAFE	174/4498	226/6746	•	1.53x10 ⁻¹
<500kb	DEE	467/1308	2223/6746		5.52x10-2
	GGE	1269/3643	2223/6746		5.15x10 ⁻²
	LFE	407/1263	2223/6746		6.13x10 ⁻¹
	NAFE	1427/4498	2223/6746	1 2 3 4 5	1.87x10-1

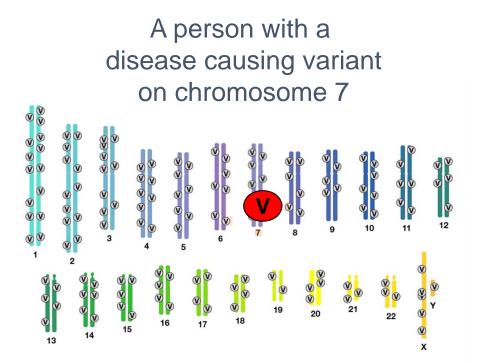


Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects

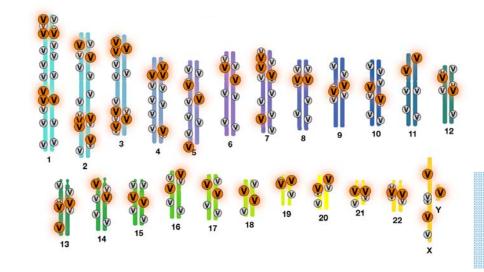
^(b)Lisa-Marie Niestroj,¹ Eduardo Perez-Palma,² Daniel P. Howrigan,³ Yadi Zhou,² Feixiong Cheng,^{2,4,5} ^(b)Elmo Saarentaus,⁶ Peter Nürnberg,^{1,7,8} Remi Stevelink,^{9,10} Mark J. Daly,^{3,6,11} Aarno Palotie^{3,6,11} and Dennis Lal^{1,2,3,12} on behalf of the Epi25 Collaborative*



Nucleotide expansion pathogenic genetic variants



@LalDennis 🔰



Polygenic disease 'risk' variants

A person with thousands of disease risk conferring variants across the genome

High Risk

Polygenic disease 'risk' variants

Polygenic burden in focal and generalized epilepsies

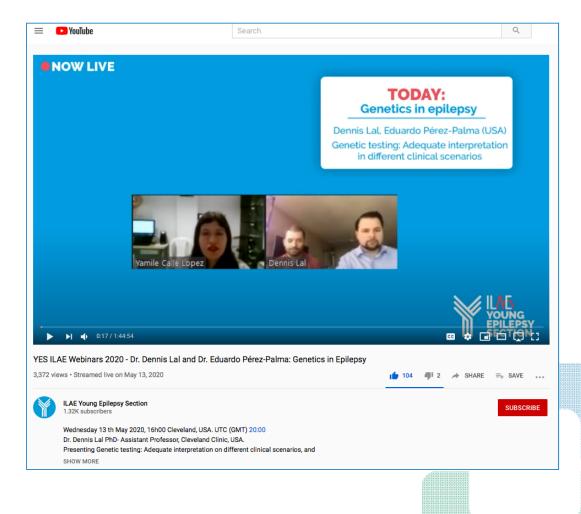
Costin Leu,^{1,2,3} Remi Stevelink,⁴ Alexander W. Smith,² Slavina B. Goleva,^{5,6} Masahiro Kanai,^{2,7,8,9,10} Lisa Ferguson,^{11,12,13} Ciaran Campbell,^{14,15}
Yoichiro Kamatani,^{10,16} Yukinori Okada,^{10,17,18} Sanjay M. Sisodiya,^{3,19} Gianpiero L. Cavalleri,^{4,15} Bobby P.C. Koeleman,⁴ Holger Lerche,²⁰ Lara Jehi,^{11,13} Lea K. Davis,^{5,6} Imad M. Najm,^{11,13} Aarno Palotie,^{2,21} Mark J. Daly,^{2,7,21} Robyn M. Busch,^{11,12,13} Epi25 Consortium and Dennis Lal^{1,2,11,22}

Low Risk

Somatic variants

- An underlying disease causing genetic variant can be identified in 1 in 2-9 patients with a lesional epilepsy (e.g., low grad tumors or cortical malformation)
- Examples of focal cortical dysplasia brain tissue sequencing studies

Study	Total sample size	FCD I	FCD II	Carrier of somatic variants	Success rate (% yield)
Zhang et al. (2020)	17	0	17	7	41.18
Baldassari et al. (2019)	80	18	62	37	46.25
Sim et al. (2019)*	75	4	71	18	24.00
Niestroj et al. (2019)	15	0	15	2	13.33
Zhao et al. (2019)	8	0	8	1	12.50
D'Gama et al. (2017)	66	0	66	14	21.21
Lim et al. (2017)	40	0	40	5	12.50
Møller et al. (2016)	19	3	16	6	31.58
Mirzaa et al. (2016)	8	0	8	4	50.00
Nakashima et al. (2015)	24	6	18	6	25.00
Lim et al. (2015)	77	0	77	12	15.58
Jansen et al. (2015)	33	0	33	4	12.12
D'Gama et al. (2015)	53	0	53	6	11.32
Total (no duplicates)	491	31	460	122	24.85


Variant interpretation is in its infancy

Important to acknowledge!

- Rare missense variants are not rare as an aggregate
- The chance to find in a genetic test a benign variant in a epilepsy gene that 'fits the broader phenotype' is high
- A large amount of previous pathogenic classified variants found in disease databases are becoming now reclassified as benign

Resources relevant for variant interpretation

 We have a ~2h overview presentation online in the young epilepsy ILAE youtube channel

Summary

- 1 in 2-12 people with epilepsy with receive a diagnosis through currently available genetic tests
- Earlier epilepsy onset and cognitive challenges increase the chance of a positive genetic test
- More comprehensive genetic tests have a greater diagnostic yield
- The number of epilepsy-associated genes is increasing
- Not everyone has access to genetic testing
- Several in 'research well-established' different types of pathogenic or risk variants are currently not screened in the clinic. This will change in the near future. Subsequently, the role of genetics in clinical management of patients will further increase.
- Not all varriants identified in clinical genetic testing are pathogenic

Acknowledgement

Cleveland Clinic, US

Imad Najm Charis Eng Costin Leu Robyn Busch Lara Jehi Arthur Stefanski Monica Surdarsanam Javier Lopez

Stanley Center & MGH, US

Mark Daly Aarno Palotie Ed Scolnick Florence Wagner Jen Pan Jeff Cottrell Sumaiya Iqbal Jakob Jespersen AJ Campbell Alexander Smith

Luxembourg Center for Systems Medicine, Luxembourg Patrick May

lald@CCF.org

Eduardo Perez Lisa-Marie Niestroj Peter Nuernberg

University of Cologne